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ABSTRACT

Compressive sensing is a new data acquisition techniqueitins

to measure sparse and compressible signals at close tartniir

sic information rate rather than their Nyquist rate. Receastilts in
compressive sensing show that a sparse or compressibld saym
be reconstructed from very few incoherent measurementsoiédh
the sampling and reconstruction process is robust to memsunt
noise, all current reconstruction methods assume somel&dges
of the noise power or the acquired signal to noise ratio. Khavl-

edge is necessary to set algorithmic parameters and stpppim

ditions. If these parameters are set incorrectly, thenehenstruc-
tion algorithms either do not fully reconstruct the acqdisegnal
(underfitting) or try to explain a significant portion of theise by
distorting the reconstructed signal (overfitting). Thip@aexplores
this behavior and examines the use of cross validation &rihéte
the stopping conditions for the optimization algorithmse @#émon-
strate that by designating a small set of measurements dislaticn

set it is possible to optimize these algorithms and redueedbon-
struction error. Furthermore we explore the trade-off leemvusing
the additional measurements for cross validation instéaéamn-

struction.

Recent results in CS demonstrate that a condensed vers@n of
sparse or compressible signal can be directly acquiredearstap us-
ing a low-rate acquisition process that projects it onto alkget of
vectors that is incoherent with the sparsity basis. Theaigrsubse-
guently recovered using an optimization (linear programjreedy
algorithm that determines the sparsest representatigistent with
the measurements. The quality of the reconstruction depemdhe
sparsity of the original signal, the choice of the recorwtan al-
gorithm, and the degree of incoherence. One of the mostttea
features of compressive sensing is that random vectorseo@ér-
ent with any sparsity-inducing basis with high probability

Since noise is often present in real data acquisition system
range of different algorithms have been developed thatlersdact
reconstruction of sparse signals from noisy compressivasore-
ments [1-8]. The reconstruction quality for compressilid@als is
comparable to that of the signal’s optimal sparse appratkamdob-
tained by keeping only the largest coefficients in the spabsisis).

There are a number of caveats for noisy CS signal reconstruc-
tion, however. First, current reconstruction algorithméygrovide
worst-case performance guarantees. Second, currentstasction
algorithms generally assume that the noise is either balod&aus-
sian with known variance. Third, most current reconstorctlgo-

Index Terms— Data acquisition, sampling methods, data mod-rithms are iterative and use information about the noisenitage

els, signal reconstruction, parameter estimation.

1. INTRODUCTION

to establish a stopping criterion. Finally, in practices #parsity or
compressibility of the signal is often unknown; this cardiéaeither
early or late termination of an iterative reconstructiogagithm. In
the former case, the signal has not been completely recmtest

Compressive sensing (CS) is a new data acquisition technique that (underfitting), while in the latter case some of the noiserésited
aims to measure sparse and compressible signals at clokeitto t as signal (overfitting). In both cases, the reconstructioality is

intrinsic information rate rather than their Nyquist rate Z]. The
fundamental premise is that certain classes of signalb,asnatural
images, have a concise representation in terms of a spaditging
basis (or sparsity basis for short) where most of the coefitsiare
zero or small and only a few are large. For example, smoottatsg
and piecewise smooth signals are sparse in the Fourier avelava
bases, respectively.

The traditional mode of data acquisition is to first unifoyml
sample the signal (at or above its Nyquist rate). Since fatewi
band signals this often results in too many samples, samigioften
followed by a second compression step. In transform-dormain-
pression (transform coding), the raw data samples areftraned
to a sparse representation in a sparsity basis; the lardéctms
are kept while the small coefficients are discarded, theretycing
the amount of data required to be stored, processed, ontitied.

inferior.

In this paper, we take the viewpoint that noisy CS signal meco
struction is essentially a model order selection and patemssti-
mation problem, which makesoss validation (CV) immediately
applicable. Cross validation is a statistical technique separates a
data set into a training/estimation set and a test/crosdatain set.
The test set is used to estimate noise levels and reduce ttiel mo
order complexity so that it does not overfit the data.

The key property of CS that enables the application of CV-tech
nigues stems from the incoherence between the measureewtots/
and the sparsity basis. In a nutshell, incoherence makesl@80-
cratic” in that it spreads the signal information evenly augst all the
measurements, giving each equal weight in the reconstrufti 2].
Furthermore, any sufficiently large set of measurements sud-
able as any other for reconstruction. While additional messents
could be used to improve the reconstruction quality, we shtbw
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improve the CS reconstruction of noisy signals.

This paper is organized as follows. Section 2 introducesdfe
uisite background on CS and CV and establishes our notefiec-
tion 3 develops our CS/CV framework for noisy signals. Sscd



provides experimental results for several reconstruaigorithms.
We close in Section 5 with a discussion and conclusions.

2. BACKGROUND ON COMPRESSIVE SENSING

2.1. Compressive Measurements

We consider signats € R that are sparse or compressible in some

sparsity basis. Without loss of generality, we assumesthsasparse
in the canonical basis &”. The signal is sparse if onl of its
coefficients are non-zero, with < N. The signal is compressible

if x € £, for p < 2; in this case, its sorted coefficients decay rapidly

and are well-approximated ds-sparse.

necessarily power limited, and, even when it is, the powmait lis
usually unknown.

The Dantzig Selectoris an alternative convex program useful when
the noise is unbounded [5]. Specifically, for the measureérasn
sumptions in (1) and if enough measurements are taken, thexo
program

X = arg min ||x||¢, S.t.[| 2" (y — %)l < V/2logNo
X

reconstructs a signal that satisfies

|lx = X|le, <o-Cy/2log(N)K.

We measure the signal by taking inner products with a set opimilar results apply for compressible signals. Unforteha this

M vectors{¢;,i = 1, ..., M} that are incoherent with the sparsity
basis. By incoherent we mean that none of the vec{grs:
1,..., M} have a sparse or compressible representation in terms
the sparsity basis; see [2] for a precise definition. The oreasent
process is a linear map : RY — R™. The measurements are then
corrupted by additive zero-mean white noisef variances? per
measurement — i.e., with an expected noise varianed o Mo?2.
The resulting measurement vecgois expressed as

y = ®x +n, E{nnT} = 0?1y, @

wherel,, is the M x M identity matrix.

2.2. Reconstruction from Noise-free Measurements

If the measurement process satisfies the Restricted |spPetperty
(RIP) conditions described in [2], then a sparse/compbéssig-
nal can be recovered exactly/approximately using spacssmsgruc-
tion algorithms that determine the sparsest signdilat explains the
measurementg [1, 2, 4]. Specific reconstruction algorithms include
linear programming (Basis Pursuit) [9] and Orthogonal Matg
Pursuit (OMP) [4]; numerical experiments demonstrate gped
formance using Matching Pursuit (MP) [10] for reconstranteven
though there are no theoretical guarantees. MP is ofteempesf to
OMP due to its significantly reduced computational compiexi

2.3. Reconstruction from Noisy Measurements

In the presence of measurement noise, variations of theratmn-
tioned algorithms have been shown to reliably approxinmtaeotig-
inal signal, assuming certain noise or signal parameter&raown.
All the algorithms used in compressive sensing solve onbefdl-
lowing formulations.
Basis Pursuit with Inequality Constraints relaxes the requirement
that the reconstructed signal exactly explain the measem&sn In-
stead, the constraint is expressed in terms of the maximstartie
of the measurements from the re-measured reconstructeal sithe
reconstruction solves the program

% = arg min x|, sty — xlle;, < ¢,

@)

some smalé > 0. In [3] itis shown that if the noise is power-limited

optimimization also requires a priori knowledge of the exrariance
and the signal sparsity.
dihe Lasso and Basis Pursuit De-Noisingre two alternative for-
mulations of the same objective. In particular, Basis Furde-
Noising relaxes the hard constraint on the reconstructimr enag-
nitude with a soft weighi in the following program:
X = argmin [[x(le, + Ally — @x[le,. @)
With appropriate parameter correspondence, this forioul & equiv-
alent to the Lasso [11]:

X = argmin [ly — @x[l¢, S.t.[[x[le; <g. 4)
Furthermore it is demonstrated in [11] that’asanges from zero to
infinity, the solution path of (3) is the same at the solutiathpof (4)
asq ranges from infinity to zero. An efficient algorithm that tesc
this path is mentioned and experimentally analyzed in [12fol-
lows that determining the proper value xfeven if all the solutions
are available, is akin to determining the power limdf the noise.

These three reconstruction formulations are based on the sa
principle: that/; minimization, under certain conditions on the mea-
surement vectors and sparsity basis, recovers the suppcations)
of the non-zero coefficients of the sparse representatitvesd al-
gorithms are often followed by a subsequent step, known bs de
asing, in which a standard least squares problem is solvettieon
support. Debiasing has been shown to lower the reconsiruet
ror; see Sec. 4.

Matching Pursuit (MP) is a greedy algorithm that iteratively incor-
porates in the reconstructed signal the component from dasare-
ment set that explains the largest portion of the residuahfthe
previous iteration [13]. At each iteratianthe algorithm computes:

Cl(cl) = <r(i71)7 ¢k>7
k= arg max |c§f)|7
— =1 (®)
=x +c 075
— =D (@)
=r - C’]; (rb/k\v

wherer(? is the residual after iterationwith r¥ = y—®x. The
algorithm is initialized using(® = 0 andr® = y and terminated

to e and enough measurements are taken, then the reconstrigsted s¥hen the residual has magnitude below a set threshold.

nalx is guaranteed to be withifi'c of the original signak:

l[x = Xlle; < Ce,

Orthogonal Matching Pursuit (OMP) additionally orthogonalizes
the residual against all measuremnent vectors selecterkiops
iterations. Although this step increases the complexitthefalgo-
rithm, itimproves its performance and provides better nstwiction

where the constar¥ depends only on the measurement parametergjuarantees compared to plain old MP. The orthogonalizatiep is

and not on the level of noise. Unfortunately, noise in pcacts not

similar to the debiasing modification of the above optim@abased



algorithms, with the exception that it is performed at eviegyation
of the algorithm rather than at the end.

3.1. Cross Validation Measurement Model

Consistent with the measurement model of (1), we proposaki® t

Both MP and OMP can be shown to converge to a solution that yitional measurements using:

fully explains the data and the noise. However, only OMP iargu
anteed to converge to a sparse solution. It is theoretipaisible
that MP converges to a dense solution that explains the measu
ments and the noise, but does not approximate well the aitigig-
nal. Experimental results, on the other hand, demonstaid ger-
formance. They further demonstrate that proper terminatfothe
algorithms is a practical way to reject the measurementeriaishe
reconstruction. However, the conditions for proper teation are
heuristic. Even in the case the stopping condition from tagi8Pur-
suit De-Noising algorithm is heuristically used, namgiy? || < e,
the noise levet is still a necessary input to the algorithm, as is the
case with all the methods described in this section. In cxldeter-
mine the correct parameter values, we propose to apply CV.

2.4. Cross Validation

Cross Validation is a statistical technique to determireeappropri-
ate model order complexity and thus avoid overfitting a maolel
set of sample data. CV first divides the data to two distints:se
training/estimation set, and a test/cross validationHe¢. model fit-
ting algorithm operates on the training set, and then itfop@ance
is predicted on the testing set. As the algorithm estimdegtobal
parameters of the model and increases the model complextiha
accuracy of the estimated parameters, the prediction qpeaitce on
the CV setincreases. However, when the algorithm begirfitiuey
the training set, its performance on the testing set deeseabhus,
a further increase in the model complexity is not benefiaial the
algorithm should terminate.

Cross validation can be immediately applied to any iteeadils
gorithm, as described in Sec. 3.2. From the family of maghin
pursuits we focus on the OMP algorithm due to its superiofgper
mance in our experiments. Similarly, several algorithmistethat
solve each of thé, -based formulations mentioned in Sec. 2.3. From
those algorithms, we focus thdomotopy continuation algorithm
introduced in [14] as a solution to the Lasso formulation.isTik
the same as theeast Angle RegressiorfLARS) algorithm with the
Lasso modification described in [12]. The key property of Hem
topy continuation is that as it iterates it visits all of th@wions to
the minimization in Eq. (4), and consequently (3),afncreases
from zero to infinity. Thus we are able to introduce CV at edeh i
ation in order to determine the appropriate parameter sdhoen all
of the solutions visited.

There exist algorithms that solve the Lasso formulationenor
efficiently than the Homotopy continuation algorithm if tharam-
eter values are predetermined and known in advance; forgram
see [6-8]. To successfully use these algorithms with cratida+
tion, however, it is necessary to execute them a number @ stim
each for a different parameter value, thus defeating thedspge of
the algorithms.

3. CROSS VALIDATION FOR COMPRESSIVE SENSING

We now demonstrate how CV can be profitably applied to CS re
construction of noisy data using any iterative signal eatiom algo-
rithm.

Yov = b . .x + Nevy,

E{nenl} = 0’1,

in which M., denotes the number of additional measuremehts,
denotes the CV measurement matrix amgd denotes the noise
added on the CV measurements. Since the same data acquisitio
system is assumed to be used to obtain both the reconstrusiib

the cross-validation measurements, the CV noise has the pam
measurement variance as the estimation noise in (1). hus, tas-
sumed that the cross validation measurement matrix is g&@tein

the same way as the acquisition measurement matrix andrprope
normalized such that the signal to noise ratio for the sigwajui-
sition measurements and the cross validation measurensetite
same. For example, if the reconstruction measurementnthtis
normalized to have unit column norm, then the CV measurement
matrix ®., is normalized to have column norm equahf@\.. /M.

On the other hand, i® contains i.i.d. entries drawn form a distri-
bution with a certain variance, tha@b., also contains i.i.d. entries
drawn from the same distribution, with the same variance.

3.2. CV-based Modification to CS Reconstruction Algorithms

Consider any iterative CS reconstruction algorithm forsgailata
such as MP, OMP, or Homotopy continuation/LARS. Each iterat
produces a signal estima&”. To be able to use cross-validation we
modify the CS reconstruction algorithm by wrapping eachatien

in a CV step as follows:

1. Initialize:
Sete = |lycev]2, x=0,i = 1.
Initialize the estimation algorithm.

2. Estimate: _
Execute one estimation iteration to comp#té .

3. Cross validate: _
If |[yev — ®vX P ]2 < € then sete = [Jycy — Py X |2,
% = %@, and terminate.

4. Iterate:

Increase by 1 and iterate from 2.

We refer to this modification as the CS-CV modification to tie C
algorithm (e.g., OMP-CV). CS-CV can be terminated after ffi-su
cient number of iterations have been executed, the numhehich
depends on the original CS reconstruction algorithm. Ate¢neina-
tion of the modified algorithmix contains the estimated signal with
the minimum cross validation errorjs the norm of this error.

If enough CV measurements are used, then the CV error after
each iteration|y., — ®.,X||> follows a relatively smooth path
as follows: as the algorithm improves the estimate of theaighe
CV error decreases; as the algorithm starts overfitting tigenthe
CV error increases. The number of iterations should be gerffic
for the original CS reconstruction algorithm to reconstthe signal
and start oververfitting the noise. For example, if OMP-CVissd
on aK-sparse signal, it should iterate at le&Stimes. In practice,
CS-CV can be terminated if a number of iterations have preduc
no improvement in the CV error. For example, a typical run MR
s shown in Fig. 1. At each iteration, the norm of the residual
y, the measurements used in the reconstruction of the sigudikl
line) decreases. However, the reconstruction error (dashine)
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Fig. 1. Evolution of the error at each iteration of a typical run of-Gased
OMP reconstruction. The errors are normalized with restmetiteir initial
values.

increases after the 36th iteration. CV ably detects thisigbaas

demonstrated with the residual g, (dashed line). In practice, the

algorithm can be safely terminated after the 40th iteration

4. EXPERIMENTAL RESULTS

This section presents experiments that demonstrate thata@\be
combined with the aforementioned standard algorithms igmad
reconstruction from noisy compressive measurements. Stdosv
the problem parameters affect the performance of the récamtion
algorithms and compare the results with the performanceeft-
gorithms assuming the noise parameters are known in advance

4.1. Experiment Setup
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Fig. 2. Comparison of standard reconstruction algorithms fronsynobm-
pressive sensing measurements with several stoppingiaritéVe fix the
parametersN = 1000, K = 50, M = 400, andon, = 2. CV performs
better than the residual criterion (Res.) when sufficient @&asurements
are used; the oracle performance is shown for referenceitiéwially, OMP
outperform both Homotopy continuation (HT) and Homotopwytawuation
with debiasing (HT/DB).

and reconstruct an estimate [15] can be used to reduce tha-rec
struction error, which suggests increasihfjand decreasingd/.. .
On the other hand, increasidd.. will improve the CV estimate and
thus ensure that the CV optimum is closer to the oracle optimu

The first experiment demonstrates how the number of cross val
idation measurements affects the performance of CV. Inetkyiri-
ment signals of sparsitif’ = 50 are sampled and reconstructed us-
ing M = 400 measurements and three different reconstruction algo-
rithms: OMP, Homotopy continuation, and Homotopy contiiara

For all the experiments we use exactly sparse signals oftHeng with debiasing. The measurement noise is a white Gausstmess
N = 1000, with the support of the signal randomly selected fromwith o, = 2. Figure 2 plots the results for a varying number of CV

a uniform distribution. The non-zero coefficients are drdvem a
standard Gaussian distribution. The signals are measisied a
measurement matrie and a CV matrix®., that have i.i.d. entries
drawn from a Rademacher distribution f&1/+/M} with equal
probability. The noise added to the measurements is psopert
malized to maintain the acquired signal-to-noise ratio R3Ne-
tween the reconstruction and the CV measurements constant.
For each algorithm we evaluate the performance using
new CV stopping criterion and the inequality stopping crite of
Eq. (2); we refer to the latter as the residual stopping roite for
reference, we also evaluate the performance of an oradledlerts
the solution for the iteration that yields the lowest distor recon-
struction. We evaluate the performance of the algorithmfasetion

measurements/., — additional to the\/ sampling measurements —
with the same measurement noise characteristics. We Sesotha
small number of CV measurements causes a large improvement i
performance — outperforming the residual criterion — wibidonal
measurements not providing significant improvement. We s¢=
that OMP outperforms the Homotopy-based algorithms.

the  The second experiment examines the tradeoff between lloca
ing the measurements to reconstruction or CV. Assuming al fixe
number of total measuremems + M., = 400 and the same sig-
nal sparsity and noise parameters as in the previous expet;imve
evaluate the performance of the three algorithma/as varies from
5 to 100. For comparison, we also plot the performance ofethes

of the number of CV measurements and use the SNR of the I’ECOQ‘]goritth assuming the same numbeiwfmeasurements is used

struction as the performance metric. We average 200 rpetiof
each experiment, with different realizations of the spatggports,
random measurement and CV matrices, and additive noise.

4.2. Number of Measurements

When the total number of measuremenfs+ M., is fixed, there is
a tradeoff between the number of compressive measureméatsd

for reconstruction for two different cases: assuming aclerguides
the reconstruction and stops the algorithm optimally, ssgliming
the exact variance of the noise added is known and used tdatstop
algorithms, as described in Sec. 2.3. Note that the sinamatses
the sample variance of the noise realization, not just theevaf
the variance parameterused to generate the noise; in practice this
value is unknown at reconstruction. The results in Fig. 3alestrate
that, although CV performance improves &k, increases, the re-

the number of CV measurementé... On the one hand, any mea- construction performance decreases as the reconstrungasure-
surements taken beyond the minimum number required towesol mentsM decrease, even if the optimal stopping iteration is known.
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Fig. 3. Tradeoff of measurements for CV and reconstruction foedft al-
gorithms. We fix the parametefé = 1000, K = 50 andoy, = 2. The total
number of measurements is help constamtfat- M., = 400. Increasing
the number of CV measurements improves the ability to debecoptimal
stopping iteration. Increasing the number of reconstoactheasurement in-
creases robustness to the additive measurement noise.
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Fig. 4. Performance of the CV performance criterion as a functiothef
signal sparsity. CV approaches the oracle performand€ decreases; the
residual criterion does not.

4.3. Parameter sensitivity

We examine the performance of CV-based CS algorithms tattes o
sundry parameters change. For presentation clarity, wasfon
OMP for these experiments.

In the first experiment the sparsify of the signal varies from

5to 100. We use/ = 5K measurements for reconstruction and

M., = 100 measurements for CV. The noise varianceis= 2.

Figure 4 shows that as the signal sparsity decreases, theeGV p

formance approaches that of the oracle, while the differénger-
formance between the residual criterion and the oracle ughiy
constant.

In the second experiment we vary the expected magnitudesof thy10

added noiser,, from 0.2 to 200 and leaveK = 50, M = 360 and

M., = 40. Figure 5 shows that the residual error stopping crite-

rion performs better than CV only at very large noise vargrio
which case all three stopping conditions perform inadezjyan re-
constructing the signal. In the range of practically acabiet levels
of noise, CV consistently outperforms the residual errd@edon.

5. CONCLUSIONS

This paper has proposed and explored CV for model selecti@Si
reconstruction from noisy measurements. Using a smalksabshe
noisy measurements to perform validation of the reconstngit is

possible to obtain performance similar to that of standecdmstruc-
tion algorithms without requiring knowledge of the noisegraeters
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Fig. 5. Performance of the CV performance criterion as a functiothef
noise magnitude. For the cases when the oracle obtains eptabte SNR,
CV outperforms the residual error criterion.

or statistics. There is, however, a tradeoff between theotisgldi-
tional measurements in the reconstruction algorithm taicedhe
reconstruction error vs. the use of these measurementa/ftw {in-
prove the detection of the optimal stopping iteration. lufa work,
we will explore CV-based schemes that rotate compressieesune-
ments in and out of the training and test data sets, evepntusithg
all the data to both estimate the parameters and cross tealide
data.
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